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Abstract 

Vehicle re-identification is investigated as a method to analyze traffic systems, such as the 

estimation of travel time distribution in a freeway network. In this paper, a vision-based algorithm 

is proposed to match vehicles between upstream and downstream videos captured by 

low-resolution (360*240) surveillance cameras and then estimate the travel time distributions. The 

algorithm consists of three stages: (1) vehicles are detected by Motion History Image (MHI) and 

Viola-Jones vehicle detector, and then image segmentation and warping are conducted to the 

detected vehicle images; (2) features (e.g., size, color, texture) are extracted from vehicle images to 

uniquely describe each vehicle in low-resolution images; and (3) vehicles from two cameras are 

matched by solving two problems: a Support Vector Machine (SVM) classifies whether a pair of 

vehicles are identical or not, and linear programming globally matches groups of vehicles between 

upstream and downstream cameras with context constraints. The proposed algorithm was 

validated on two sections of freeway in St. Louis, Missouri, United States, which outperforms the 

state-of-the-art methods and accurate travel time estimation is achieved based on the 

re-identification results.  



1 
 

Chapter 1 Introduction 

Vehicle Re-identification (VRI) is critical to track vehicles in a transportation network with 

distributed sensors. By tracking vehicles in a network, important traffic parameters such as travel 

time can be obtained, which are of great value for traffic engineers for detecting traffic jams, 

controlling traffic variability, and designing future transportation networks.  

A variety of technologies have been investigated for VRI. Detailed algorithms vary in 

accordance with the sensors based on which VRI is implemented. These sensors include induction 

loop sensors [1, 2], bluetooth [3], wireless magnetic sensors [4], and video cameras and so on. A 

typical vehicle re-identification procedure consists of three stages: vehicle detection, feature 

extraction, and vehicle matching. The accuracy of vehicle detection, the availability of features, 

and the selection of a matching algorithm all have important effects on the robustness of a VRI 

system.  

1.1 Related Work 

This paper focuses on the vision-based VRI algorithm, which is one of the most 

straightforward and intuitive techniques that can be used to re-identify the same vehicle as it 

moves between two sensors. This type of technique has been extensively researched due to the 

prevalence of surveillance cameras installed above traffic roads [5, 6, 7, 8, 9, 10]. Vehicles are 

easily re-identfied by the plate number in Ozbay et al. [5], although Wang et al. [6] took a different 

approach by extracting a color histogram, Histogram of Oriented Gradient (HOG), and aspect ratio 

as vehicle features in their study. Later, Jiang et al. [7] added Local Binary Pattern (LBP) to 

improve the accuracy. To deal with the constantly changing viewpoint, Hou et al. [8] calibrated 

vehicles’ poses by using 3D models of the vehicles. 

Although these methods have achieved relatively good performances, they all rely on the 

availability of high-resolution cameras. When dealing with low-resolution cameras, Sumalee et al. 
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[9] was able to achieve only 54.75% re-identification precision in videos with a resolution of 

764*563 pixels. Sun et al. [10] attempted to mitigate these camera limitations by combining 

vision-based and induction loop sensor-based vehicle features to re-identify vehicles. 

A variety of matching algorithms have been developed; their main differences lie in the 

way they define the probability of one vehicle being identical/different to another. Wang et al. [6] 

directly incorporated the weighted sum of feature distances as the probability of a pair of vehicles 

being identical. Kamijo et al. [11] took a different approach, performing dynamic programming on 

two sequences of vehicles passing between upstream and downstream cameras to identify 

individual vehicles. However, this method required that the order of vehicles remains relatively 

unchanged. Tawfik et al. [1] defined a threshold for each feature distance and used a dicision tree 

cascade framework to determine whether two vehicles were identical, while Sumalee et al. [9] and 

Cetin et al. [12] both used a Bayes-based probabilistic technique to fuse vehicle features for the 

re-identification decision. 

There are two main drawbacks to all previous vehicle matching algorithms: (1) the 

threshold and weight for each feature are usually manually determined, and (2) the vehicle pairs 

may not be linearly separable in the feature space. This is important because most of the previous 

work has depended on linear decision models.  

1.2 Challenges 

The challenges related to vision-based vehicle re-identification can be summarized as 

follows: 

1. In low-resolution camera images, a vehicle may be represented by a relatively small 

number of pixels. General visual features such as Histogram of Oriented Gradients 

(HOG) [13], Local Binary Pattern (LBP) [14], and Scale Invariant Feature Transform 

(SIFT) [15] will not work well since these local-statistics-based features tend to be 
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inaccurate when there are insufficient pixels. 

2. The lighting conditions under which the cameras operate may change considerably over 

time, which may cause the color of a pair of identical vehicles to appear different when 

viewed by upstream and downstream cameras.  

3. The viewpoints inevitably vary between the upstream and downstream cameras, 

resulting in marked variations in the vehicle’s texture. 

The above challenges mean that the identification of reliable visual features for 

low-resolution vehicle images is vital. These features should be invariant to both illumination and 

viewpoint. Meanwhile, because of the limited information provided by low-resolution vehicle 

images, a more effective matching strategy is required to clearly classify identical/different vehicle 

identities.  

Note, although some of the challenges can be mitigated by choosing High Definition (HD) 

cameras, it increases the hardware cost and bandwidth cost to transmit the videos. For example, 

there are 300+ traffic surveillance cameras existing in the St. Louis area, and the video streams 

from TransSuite to us have a resolution of 360*240 pixels. The project collaborating with the 

Missouri Department of Transportation (MoDOT) and Mid-America Transportation Center 

(MATC) aims to attack the vehicle re-identification problem from the software side using the 

existing hardware. 

1.3 Proposal and Contributions 

The objective of this paper is to introduce a vison-based vehicle re-identidication algorithm 

from videos captured by two low-resolution and non-overlapping cameras. Additionally, 

challenges such as illumination and viewpoint changes are considered in this paper. Finally, travel 

time distribution between two camera locations is estimated based on the re-identification results. 

The contributions of this paper are three-fold: 
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1. In this paper, vehicles are detected by Motion History Image (MHI) and Viola-Jones 

vehicle detectors. The influence of illumination change is mitigated by MHI. After 

warping the upstream and downstream videos with homograph matrices, their 

viewpoints are calibrated. Features including the size, color, and texture information are 

extracted from warped vehicle images. This specially-designed procedure works well for 

vehicle detection and feature extraction in low-resolution videos. 

2. Rather than fusing features by linear weighted summation, a clearer gap is found to 

separate identical and different vehicles by the Support Vector Machine [24], which is a 

strong classifier mapping the original training data to a hyperplane, thus resulting in a 

non-linear and more robust decision model. 

3. A global optimization problem is formulized that extends the assignment framework 

illustrated by Cetin et al. [12] to a more general model in which the miss detection of 

vehicles and vehicles entering or exiting the section between two cameras is considered. 

The rest of the paper is organized as follows. The next section presents the problem 

formulization and system overview. Detailed descriptions of the VRI system, including vehicle 

detection, feature extraction, and matching strategy, are described in sections 3-5, respectively. 

The test results are discussed in section 6. The paper ends with conclusions and future work. 
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Chapter 2 Problem Statement and Overview of the System 

Vehicle Re-identification (VRI) essentially resolves the following mathematical problem: 

 

Upstream Vehicle Set:𝑈 = {𝑈1, … , 𝑈𝑖 , … , 𝑈𝐼 ,U𝜑} 

 

Downstream Vehicle Set:𝐷 = {𝐷1, … , 𝐷𝑗, … , 𝐷𝐽,D𝜑} 

 

Reidentification: {𝑈1, … , 𝑈𝑖 , … , 𝑈𝐼 , 𝑈𝜑} ↔ {𝐷1, … , 𝐷𝑗, … , 𝐷𝐽, 𝐷𝜑} 

 

where 𝑈𝑖 and  𝐷𝑗  are the 𝑖𝑡ℎ and 𝑗𝑡ℎ vehicle captured by upstream and downstream cameras within 

the same time interval, respectively. U𝜑 and D𝜑 are special void objects, different from 𝑈𝑖 or 𝐷𝑗 , 

that can be used to map unmatched vehicles. Two different aspects of this re-identification 

problem are important. 

Firstly, it is a classification problem. A category must be assigned to each vehicle pair 

(𝑈𝑖, 𝐷𝑗), namely either “𝑈𝑖 and 𝐷𝑗  are identical” or “𝑈𝑖 and 𝐷𝑗  are different.” From another point 

of view, this is a mapping problem. For each upstream vehicle in the set 𝑈, we need to find the 

most identical and unique vehicle in 𝐷, the downstream set, and vice versa. Because some vehicles 

may be misdetected in the downstream or exit before reaching the downstream camera, vehicles in 

𝑈 may not correspond to any mapped vehicle in 𝐷, so these vehicles are mapped to a void object 

𝐷𝜑. Similarly, vehicles in 𝐷 with no matched vehicles in 𝑈 are mapped to the void object 𝑈𝜑. All 

mappings involving 𝐷𝜑 and 𝑈𝜑 can be many-to-one mapping; the remaining elements in sets U 

and D are all one-to-one mappings. 

Based on this mathematical formulation, the VRI algorithm introduced in this paper 
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consists of three phases:  

1. Vehicle Detection. Videos are recorded from upstream and downstream cameras 

simultaneously and vehicles are detected by Motion History Image (MHI) and 

Viola-Jones detectors. The detected vehicle images are preprocessed using segmentation 

and warping techniques. 

2. Feature Extraction. Features including vehicle size, color, and texture information are 

extracted from the vehicle images. A feature distance vector describing the similarity of 

each pair of vehicles is then obtained. 

3. Vehicle Matching. The classification problem illustrated above is solved by a Support 

Vector Machine (SVM), while the mapping problem is regarded as a global optimization 

problem with some constraints and can be solved by linear programming. 
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Chapter 3 Vehicle Detection 

Detecting vehicles in each frame is the initial critical step of a Vehicle Re-identification 

(VRI) system. This step is especially challenging when the lighting conditions and viewpoints 

vary among cameras. For each frame of a video, such as the one shown in figure 3.1a, the 

technique of Motion History Image (MHI) [16] is first adopted to detect image regions with 

moving pixels. The results of this process are shown in figure 3.1b. The Viola-Jones vehicle 

detector [17] is then applied to find the precise positions of the vehicles (fig. 3.1c) within the 

regions of moving objects. To further locate the boundaries of the vehicles, segmentation is 

applied to separate the foreground (vehicles) from the surrounding background (fig. 3.1f). Finally, 

the vehicle image is warped to the viewpoint directly facing the lanes (fig. 3.1g), thus mitigating 

the problem of viewpoint differences between the upstream and downstream cameras. The same 

process is applied to both the upstream and downstream videos. 

 

   

Figure 3.1 Flowchart for vehicle detection: (a) a frame in a video, (b) moving object detection 

result for MHI, (c) positions of vehicles detected by Viola-Jones detector, (d) warped image of (a), 

(e) one cropped vehicle image, (f) vehicle image after eliminating background, (g) warped vehicle 

image 
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 Motion History Images (MHI) and the Viola-Jones detector perform complementary 

functions in the proposed algorithm to detect vehicles. Although MHI is an efficient way to find 

moving objects, as figure 3.1b shows, it is difficult for MHI to determine whether the moving 

regions consist of one or two vehicles when two vehicles are adjacent to each other or one vehicle 

is moving with its own shadow. Thus, the Viola-Jones detector is applied to moving regions to 

determine the accurate positions of vehicles within the candidate regions without the need to 

search in other impossible regions. In addition, MHI is more resistant to illumination changes than 

ordinary background subtractions such as the Gaussian Mixture Model (GMM) (18). Figure 3.2a 

shows a frame when the illumination is changing due to clouds moving across the sun. Figure 3.2b 

shows the moving object detection result obtained using GMM, which is unsatisfactory because 

GMM updates the background at constant time intervals, but the illumination level changes 

relatively rapidly and in an unpredictable way due to the intermittent cloud cover. MHI solves this 

problem by applying a forward and backward decaying background subtraction [16]. Figure 3.2c 

shows the results of the MHI moving object detection. The influence of the changing background 

illumination is removed and the moving objects are clearly detected. 

 

 

Figure 3.2 Advantage gained by using MHI: (a) original image, (b) GMM detection results, (c) 

MHI detection results 
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The detailed information that can be extracted from vehicle images is limited by the low 

camera resolution, and the background surrounding the vehicles can worsen this problem because 

it adds noise to the feature extraction. Thus, removing the background from vehicle images is of 

great significance for extracting valuable features. Here, we consider pixels outside the boundary 

of a vehicle to be background while pixels within the boundary are part of the foreground image 

and adopt the Graph-Based Image Segmentation algorithm [19] to rule out the background (fig. 

3.1f). 

To mitigate the problem of different viewpoints between upstream and downstream 

cameras, as shown in figures 3.1a and 3.1d, the original image is warped to the viewpoint directly 

facing the lanes by a homography matrix, Ha, using the warping method proposed in Kanhere et al. 

[20]. Once 𝐻𝑎 is determined it remains fixed because the camera is stationary. Ha is then applied 

to every detected vehicle image, as shown in figure 3.1g, thus ensuring that every vehicle is viewed 

from the same viewpoint. 
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Chapter 4 Feature Extraction 

The vehicle image (template) is the raw vehicle feature. Other features, such as size, color, 

and texture can be extracted for vehicles. Let 𝑉𝑈𝑖 and 𝑉𝐷𝑗 denote the warped and 

background-eliminated vehicle images for vehicles 𝑈𝑖 and 𝐷𝑗 , respectively. For each vehicle in 𝑈, 

a feature set 𝐹𝑈𝑖 can be formed to describe 𝑈𝑖. The corresponding feature set for downstream 

vehicles is denoted as 𝐹𝐷𝑗. Without loss of generality, only 𝐹𝑈𝑖 is described in this section. 

4.1 Size Feature 

Because the viewpoints and resolutions of the upstream and downstream cameras are 

warped to be the same, this preprocessing implicitly normalizes vehicles between different 

cameras and lanes, which simplifies their size comparison. The number of foreground pixels is a 

good way to estimate the size of 𝑈𝑖, which is denoted as 𝑆𝑈𝑖. 

4.2 Color Feature 

To fully extract the color information of a vehicle, two color models are adopted: original 

Hue-Saturation-Illumination (HSI) histograms (𝐶𝑈𝑖
𝐻 ,𝐶𝑈𝑖

𝑆 , 𝐶𝑈𝑖
𝐼 ), and normalized hue histograms 

(𝐶𝑈𝑖
𝑁𝐻).     

For original HSI histograms, the three image channels are treated separately. Each channel 

is divided into 20 bins, thus 𝑈𝑖 has three 20-bin histograms: 𝐶𝑈𝑖
𝐻 ,𝐶𝑈𝑖

𝑆 , 𝐶𝑈𝑖
𝐼 , corresponding to the H, 

S, and I color channels, respectively. However, the original HSI histograms may vary in response 

to illumination changes. This problem can be mitigated if the illumination and saturation 

information is normalized. To achieve this, a 20-bin normalized hue histogram, denoted as 𝐶𝑈𝑖
𝑁𝐻, is 

added to extract the pure hue information of a vehicle image [21].  

Original HSI histograms are satisfactory when illumination conditions are stable. Figure 

4.1 shows an example of what happens when the illumination changes. Vehicles a and b are 
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identical while c is different. The original hue histograms of a and b are quite different, but after 

normalization, their hue histograms show that their color is similar. However, color information is 

not sufficient to distinguish between different vehicles of similar colors (e.g., c’s color histograms 

are similar to a’s and b’s), so texture information is also required. 

 

 

Figure 4.1 Vehicle images and their standard deviation signature (SDS), original HSI histograms, 

and normalized HSI histograms: a and b are identical while c is different 

 

4.3 Texture Feature 

Classical texture descriptors (e.g., HOG, LBP) work poorly in low resolution vehicle 

images. We therefore propose a standard deviation-based texture descriptor. As shown in figure 

4.1, vehicle a has no sunroof, but vehicle c does. This difference can be described by the standard 

deviation in the roof regions of the vehicles. Mathematically, the standard deviation signature 

(SDS) is a one-dimensional vector with the 𝑚𝑡ℎ dimension equaling the standard deviation of the 
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foreground pixels in the 𝑚𝑡ℎ row or column of V𝑈𝑖. Row SDS of 𝑈𝑖 is denoted as T𝑈𝑖
𝑆𝐷𝑆𝑟, while 

column SDS is denoted as 𝑇𝑈𝑖
𝑆𝐷𝑆𝑐. Thus, the 𝑚𝑡ℎ dimension of  T𝑈𝑖

𝑆𝐷𝑆𝑟  is defined as 

 

 T𝑈𝑖
𝑆𝐷𝑆𝑟 = (

1

𝑐𝑜𝑙𝑠−1
∑ (𝑉𝑈𝑖(𝑚, 𝑛) −

1

𝑐𝑜𝑙𝑠
∑ 𝑉𝑈𝑖(𝑚, 𝑛)
𝑐𝑜𝑙𝑠
𝑛=1 )

2
𝑐𝑜𝑙𝑠
𝑛=1 )

1

2

                                                         (1) 

 

where 𝑉𝑈𝑖(𝑚, 𝑛) is the grayscale pixel value in row 𝑚 and column 𝑛 of  𝑉𝑈𝑖. 𝑐𝑜𝑙𝑠 is the column 

number of foreground area. 𝑇𝑈𝑖
𝑆𝐷𝑆𝑐 can be calculated in a similar way, but in the column direction. 

The red box in figure 4.1 shows 𝑇𝑈𝑖
𝑆𝐷𝑆𝑐 for each of the three vehicles. It is clear that the 

signatures of a and b are similar, while the signature of c is much rougher because c involves more 

textural differences. 

4.4 Feature Distance 

The feature sets 𝐹𝑈𝑖 and 𝐹𝐷𝑗 are the sets of all features extracted from 𝑈𝑖 and 𝐷𝑗 , 

respectively: 

 

 𝐹𝑈𝑖 = {𝑆𝑈𝑖 , 𝐶𝑈𝑖
𝐻 , 𝐶𝑈𝑖

𝑆 , 𝐶𝑈𝑖
𝐼 , 𝐶𝑈𝑖

𝑁𝐻, 𝑇𝑈𝑖
𝑆𝐷𝑆𝑟 , 𝑇𝑈𝑖

𝑆𝐷𝑆𝑐 , 𝑉𝑈𝑖}                                                                         (2) 

 

 𝐹𝐷𝑗 = {𝑆𝐷𝑗 , 𝐶𝐷𝑗
𝐻 , 𝐶𝐷𝑗

𝑆 , 𝐶𝐷𝑗
𝐼 , 𝐶𝐷𝑗

𝑁𝐻, 𝑇𝐷𝑗
𝑆𝐷𝑆𝑟 , 𝑇𝐷𝑗

𝑆𝐷𝑆𝑐 , 𝑉𝐷𝑗}                                                                        (3) 

 

where the raw vehicle images 𝑉𝑈𝑖 and 𝑉𝐷𝑗 are used to calculate the template distance. Thus, the 

feature distance describing the similarity of vehicle pair (𝑈𝑖, 𝐷𝑗) is denoted as 
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DIS(𝑈𝑖, 𝐷𝑗) = [𝐷𝐼𝑆𝑆, 𝐷𝐼𝑆𝐶𝐻 , 𝐷𝐼𝑆𝐶𝑆 , 𝐷𝐼𝑆𝐶𝐼 , 𝐷𝐼𝑆𝐶𝑁𝐻 , 𝐷𝐼𝑆𝑇𝑆𝐷𝑆𝑟 , 𝐷𝐼𝑆𝑇𝑆𝐷𝑆𝑐 , DIS𝑇𝑒𝑚𝑝]                   (4) 

 

Each dimension of DIS(𝑈𝑖, 𝐷𝑗) is the distance of the corresponding feature of 𝐹𝑈𝑖and 𝐹𝐷𝑗. 

Based on the properties of size, color, and texture features, different distance metrics are used in 

the feature distance vector. 

The size distance 𝐷𝐼𝑆𝑆 of a vehicle pair (𝑈𝑖, 𝐷𝑗) is defined as  

 

 𝐷𝐼𝑆𝑆 =
𝑆𝑈𝑖

𝑆𝐷𝑗
.                                                                                                                                     (5) 

 

The color distance 𝐷𝐼𝑆𝐶 of a vehicle pair (𝑈𝑖, 𝐷𝑗) is defined as 

 

DIS𝐶 = 1 −

(

 1 −
∑ (C𝑈𝑖

(k)×𝐶𝐷𝑗
(k))

1
2

20
k=0

20(μ(C𝑈𝑖)×μ(CD𝑗))

1
2

)

 

1

2

                                                                                     (6) 

 

where 𝑘 is the 𝑘𝑡ℎ dimension of the histograms and μ(∗) is the arithmetic mean function. Equation 

6 is applied to 𝐷𝐼𝑆𝐶𝐻 , 𝐷𝐼𝑆𝐶𝑆 , 𝐷𝐼𝑆𝐶𝐼 , and 𝐷𝐼𝑆𝐶𝑁𝐻 . 

The length of the standard deviation signature of a vehicle pair may not be the same, but 

they can be normalized by linear interpolation. The texture distance 𝐷𝐼𝑆𝑇 of  (𝑈𝑖, 𝐷𝑗) is defined as 

their covariance, 
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𝐷𝐼𝑆𝑇 =
𝜇(𝑇𝑈𝑖𝑇𝐷𝑗)−𝜇(𝑇𝑈𝑖)𝜇(𝑇𝐷𝑗)

𝑣(𝑇𝑈𝑖)

1
2𝑣(𝑇𝐷𝑗)

1
2

                                                                                                       (7) 

 

where 𝑣(∗) is the variance function. Equation 7 is applied to both 𝐷𝐼𝑆𝑇𝑆𝐷𝑆𝑟  and 𝐷𝐼𝑆𝑇𝑆𝐷𝑆𝑐 . 

Besides the feature distances described above, a template distance is also adopted based on 

the grayscale pixel subtraction of 𝑉𝑈𝑖 and 𝑉𝐷𝑗. The binary images 𝐿𝑈𝑖 and 𝐿𝐷𝑗are obtained with 

foreground pixels equaling 1 and background pixels equaling 0. Then the maximal value 𝐵(𝑈𝑖, 𝐷𝑗) 

of two-dimensional cross correlation between L𝑈𝑖 and L𝐷𝑗 is calculated as 

 

B(𝑈𝑖, 𝐷𝑗) = max
(k,l)

∑ ∑ L𝑈𝑖(m, n)𝐿𝐷𝑗(m − k, n − l)
N−1
n=0

M−1
m=0                                                              (8) 

 

where 𝑀 and 𝑁 are the length and width of each of the binary images, separately. If (kmax, lmax) 

can maximize equation 8, then the template distance of (𝑈𝑖, 𝐷𝑗) is defined as 

 

DIS𝑇𝑒𝑚𝑝 =
∑ ∑ |𝑉𝑈𝑖

(m,n)−𝑉𝐷𝑗(m−kmax,n−lmax)|
2

N
n=1

M
m=1

255∗255∗B(𝑈𝑖,𝐷𝑗)
                                                                        (9) 

 

DIS(𝑈𝑖, 𝐷𝑗) describes the similarity relationship between a vehicle pair  (𝑈𝑖, 𝐷𝑗) and 

serves as the input for SVM, which will be discussed in the next section. 
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Chapter 5 Vehicle Matching 

As noted in the second section, two problems need to be solved: classification and 

mapping. This section presents details showing how the two problems are solved by using the 

Support Vector Machine (SVM) and linear programming techniques. 

5.1 SVM-based Classification  

SVM has been successfully applied to solve a number of classification problems [22, 23]. 

The primary objective of SVM is to find a gap between two categories (namely positive and 

negative), and this gap should be as wide as possible. For a linear inseparable problem, SVM maps 

the original finite-dimensional space into a much higher-dimensional space, making the separation 

linear in that space and thus obtaining better classification results. 

 

 

Figure 5.1 SVM for two category linear inseparable classification: (a) original feature space, (b) 

higher feature space 

 

Interested readers can refer to Scholkopf and Smola’s work [24] for a full mathematical 

analysis of SVM. Here, we will instead consider an example to illustrate how SVM works in 

practice. As shown in figure 5.1, the X axis is 𝐷𝐼𝑆𝐶𝑁𝐻  for a vehicle pair and the Y axis is 𝐷𝐼𝑆𝑇𝑆𝐷𝑆𝑐  
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for the same vehicle pair. We begin by randomly choosing 500 identical vehicle pairs (red points) 

and 500 different vehicle pairs (green points). In figure 5.1, these are not linearly separable. 

However, after the original feature space is mapped into a higher dimensional feature space with a 

kernel function, the two categories can be easily separated (fig. 5.1). 

For a standard SVM framework, there are two stages: training and classification. In the 

training stage, we label the positive samples (identical pairs) as Arabic numeral 1 while negative 

samples (different pairs) are labelled as -1. A SVM classifier is trained based on DIS(𝑈𝑖, 𝐷𝑗) and 

their labels. In the classification stage, for each pair of vehicles (𝑈𝑖, 𝐷𝑗), the SVM classifier gives a 

confidence Conf(𝑈𝑖, 𝐷𝑗) that describes the classification result. A value for Conf(𝑈𝑖, 𝐷𝑗) that is 

larger than 0 means that (𝑈𝑖, 𝐷𝑗) is matched, while a Conf(𝑈𝑖, 𝐷𝑗) value that is less than 0 means 

that (𝑈𝑖, 𝐷𝑗) is unmatched. Thus, the possibility that (𝑈𝑖, 𝐷𝑗) are matched is proportional to 

Conf(𝑈𝑖 , 𝐷𝑗).  

5.2 Linear Programming-based Mapping 

Conf(𝑈𝑖 , 𝐷𝑗) describes how identical a vehicle pair is. However, it is possible for one 

upstream vehicle to be matched to more than one downstream vehicle. Mapping resolves this issue 

by formulating a global optimization problem that maximizes the overall confidence of all the 

matched vehicle pairs between two cameras by imposing several constraints. Mathematically, let 

x(Ui, Dj) denote whether (𝑈𝑖, 𝐷𝑗) is identical. If so, x(Ui, Dj) = 1. If not, x(Ui, Dj) = 0. Then, the 

maximization problem can be expressed as a standard linear programming problem: 

 

max(∑∑Conf(Ui, Dj)x(Ui, Dj)

DjUi

+∑Conf(Ui, Dφ)x(Ui, Dφ)

Ui

+∑Conf(Uφ, Dj)x(Uφ, Dj)

Dj

) 

                                                                                                                                                     (10) 
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Subject to: 

 

 Conf(Ui, Dφ) = δ for all Ui                                                                                                       (10.1) 

 

 Conf(Uφ, Dj) = δ for all Dj                                                                                                      (10.2) 

 

∑ x(Ui, Dj)Ui
+ x(Uφ, Dj) = 1 for all Dj                                                                                   (10.3) 

 

∑ x(Ui, Dj)𝐷𝑗
+ x(Ui, Dφ) = 1 for all Ui                                                                                    (10.4) 

 

if TMD𝑗 ∉ [TMU𝑖 + TMmin, TMU𝑖 + TMmax], then x(Ui, Dj) = 0                                              (10.5) 

 

x(Ui, Dj) ∈ {0,1}, x(Ui, Dφ) ∈ {0,1}, x(Uφ, Dj) ∈ {0,1}                                                             (10.6) 

 

In equations 10.1 and 10.2, δ is the confidence of void object mapping, and this is set at 0 

because 0 is the decision boundary of confidence of matched and unmatched vehicle pairs. 

Equations 10.3 and 10.4 ensure a one-to-one mapping, that is, each vehicle in 𝑈can only be 

mapped to a single vehicle (including void object) in 𝐷 and vice versa. Note U𝜑 and D𝜑 are not 

subject to this one-to-one mapping restriction. 

The time constraint is also considered in equation 10.5. The travel time for one vehicle 

moving from the upstream camera to the downstream camera under normal conditions is 

constrained. Let TMmin and TMmax denote the minimum and maximum time one vehicle needs to 
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travel from the upstream camera to the downstream camera. (TMU𝑖 , TMD𝑗) is the timestamp 

denoting the time when (Ui, Dj) disappear from the upstream and downstream cameras, 

respectively. Thus, unreasonable travel time should be eliminated.  
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Charpter 6 Results 

The VRI algorithm was tested using two case studies:  

 Case 1:  

o A 3.7-km section of a three-lane freeway with no entrances or exits (figs. 6.1a 

and 6.1b) from camera W/O SIX FLAGS to camera E/O PACIFIC.  

o The upstream location was recorded from 15:41:30 to 16:11:30 on May 26th, 

2014; the downstream location was recorded from 15:42:30 to 16:12:30 on the 

same day.  

 Case 2 

o A 1.7-km section of four-lane freeway with one exit (figs. 6.1c and 6.1d) from 

camera N/O LINDBERGH to camera REAVIS BARRACKS.  

The frame rate of the videos was 12 frames per second (FPS) and the video resolution was 

360*240 pixels. The average size of each vehicle was about 40*40 pixels. Illumination and 

viewpoint changes were involved in both cases to test the effectiveness of the proposed VRI 

algorithm. 
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Figure 6.1 Screenshots of recorded videos: (a) upstream frame in case 1, (b) downstream frame in 

case 1, (c) upstream frame in case 2, and (d) downstream frame in case 2. Case 1 involves no 

entrances or exits while case 2 has one exit. 

 

The ground truth was obtained by manually detecting and re-identifying vehicles in the 

upstream and downstream videos. In case 1, 776 vehicles were detected in the upstream video and 

804 vehicles in the downstream video during the 30-min period, of which 713 pairs of vehicles 

were manually matched. In case 2, 961 vehicles were detected in the upstream video and 775 

vehicles in the downstream video during the 20-min period, of which 750 pairs of vehicles were 

manually matched. Copies of these videos were also recorded for training; 683 and 692 pairs of 

vehicles were manually matched for cases 1 and 2 in the training stage, respectively. 
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6.1 Performance Metrics 

Three metrics are utilized here to evaluate the performance of the VRI system: 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                       (11) 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                            (12) 

 

Fscore = 2 ∙
precision.recall

precision+recall
                                                                                                         (13) 

 

where true positives (TP) represent the number of correctly matched vehicle pairs. False Positives 

(FP) are the number of pairs of different vehicles mistakenly regarded as matched by the 

algorithms, and false negatives (FN)  are the number of identical vehicle pairs mistakenly regarded 

as different vehicles by the algorithms. Recall concerns the proportion of correctly matched 

vehicles among the ground truth sample, while precision focuses on the proportion of correctly 

matched vehicles among all vehicle pairs matched by the proposed VRI algorithm. The F-score is 

a comprehensive evaluation. 

6.2 Quantitative Performance Evaluation  

In case 1, 492 pairs of vehicles were correctly matched while 239 pairs were deemed to be 

FP. Thus, the precision, recall, and F-score of case 1 are 67.31%, 69.00%, and 68.14%, 

respectively. In case 2, 430 pairs of vehicles were correctly matched while 337 pairs were deemed 

to be FP. Thus, the precision, recall, and F-score of case 2 are 56.06%, 57.33%, and 56.69%, 

respectively. Sumalee et al. [9] achieved 54.75% re-identification precision in videos with a much 

higer resolution of 764*563 pixels, thus the present algorithm ourperforms their proposed 
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probabilistic fusion method. 

Note that the performance for case 2 was much lower than case 1. This might be because 

there is a freeway exit between the two cameras in this case, so some vehicles in the upstream 

video will not appear in the downstream video, introducing noise when they are re-identified. To 

validate the analysis, we manually removed all the vehicles that exited before reaching the 

downstream camera, at which point the re-identification result improved to 70.82% in precision, 

68.93% in recall, and 69.86% in F-score. These results are comparable to those for case 1. Placing 

surveillance cameras on the exit would thus enhance the algorithm’s matching performance by 

making it possible to re-identify vehicles using three cameras (upstream, downstream, and exit). 

6.3 Comparison 

To validate the effectiveness of the specific components in the proposed VRI algorithm, a 

series of comparisons were performed. The decrease in performance when one component is not 

considered indicates that this component makes a contribution to the VRI algorithm and the degree 

of the decrease can indicate the relative importance of that component. 

Comparing the first two rows of table 6.1 with the last row of table 6.1 (the proposed VRI 

algorithm) clearly demonstrates that the operations of segmentation and warping applied to every 

vehicle image are helpful in improving the performance.   

The next three rows in table 6.1 indicate the relative importance of three features (size, 

color, texture). For example, in case 2, the F-score decreases by 1.86%, 11.91%, and 17.82% when 

the size, color, and texture features, respectively, are not considered. This indicates that the texture 

feature is more important than the size and color features, which can be explained in several 

aspects. First, when vehicles are viewed from a long distance, their size difference is not obvious, 

thus it is not enough to distinguish one vehicle from others based on size. Second, in both case 1 

and case 2, the colors of over 60% of the vehicles were either white or black, and this limited color 
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palette makes it harder to distinguish between the many vehicles with similar coloration. Third, the 

texture feature is sensitive to quite subtle differences between vehicles, such as whether the lights 

are on and whether the sunroof is open, which makes it well suited to the identification of 

individual vehicles. 

The last three rows in table 6.1 compare the classifier adopted in this paper with other 

classifiers implemented in previous work. A decision tree is used in Tawfik et al. [1], while a Bayes 

based classification model is utilized in Sumalee et al. and Cetin and Nichols [9, 12]. The results 

clearly show that SVM outperforms other classifiers in the VRI classification problem. 

 

Table 6.1 Algorithm Comparison (√: considered  −: not considered  DT: Decision Tree) 

    Preprocessing        Feature      Classifier    Results for Case1       Results for case 2 

Segmentation Warping Size Color Texture SVM DT Bayes %Precision %Recall %Fscore %Precision %Recall %Fscore 

√ − √ √ √ √ − − 62.88 64.38 63.62 54.68 56.13 55.39 

− √ √ √ √ √ − − 60.94 61.71 61.32 54.12 53.47 53.79 

√ √ − √ √ √ − − 57.50 58.06 57.28 54.09 55.60 54.83 

√ √ √ − √ √ − − 57.99 60.03 58.99 44.11 45.47 44.78 

√ √ √ √ − √ − − 36.02 37.59 36.79 38.29 39.47 38.87 

√ √ √ √ √ − √ − 29.88 25.95 27.82 30.40 27.60 28.93 

√ √ √ √ √ − − √ 45.37 47.41 46.36 41.94 43.33 42.62 

√ √ √ √ √ √ − − 67.31 69.00 68.14 56.06 57.33 56.69 
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6.4 Travel Time Estimation 

 

Figure 2.2 Comparison of the estimated and manually observed travel time distributions of (a) 

case 1 and (b) case 2 

 

Travel time can be obtained by calculating the time differences between vehicle pairs in the 

upstream and downstream videos. Ground truth is obtained by manually matching vehicle pairs 

while the estimated travel time distribution is obtained by TP and FP.  Figure 6.2a and 6.2b show 

the travel time distributions for case 1 and case 2, respectively. To verify the validity of the 

estimated travel time distributions, Root Mean Square Deviation (RMSD) is adopted as a 

performance metric here, which is calculated by  

 

RMSD = (
1

𝐾
∑ (𝑋𝑘 − 𝑋𝑘

∗)2𝐾
𝑘=1 )

1

2
                                                                                                 (14) 

 

where K is the number of bins of the time distribution, 𝑋𝑘 is the estimated frequency of travel time, 

and 𝑋𝑘
∗ is the ground truth of frequency. The RMSD for the estimated travel time distributions are 
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0.0270 and 0.0324 for cases 1 and 2, respectively. These relatively small values for RMSD indicate 

that the results of the proposed VRI algorithm do indeed offer a reliable way to estimate the travel 

time distribution between the upstream and downstream cameras. 

In addition to the estimation of travel time distribution, the average travel times can also be 

compared. Relative Error (RE) is adopted to measure the performance here, which is defined as 

 

RE =
|𝑌̅−𝑌̅∗|

𝑌̅∗
                                                                                                                                  (15) 

 

where 𝑌̅ is the estimated average travel time, while 𝑌̅∗ is the ground truth. The RE for case 1 and 2 

are  
|119.575−119.891|

119.891
= 0.26% and 

|60.478−60.083|

60.083
= 0.66%, respectively, which also shows the 

accuracy of  travel time estimation. 
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Chapter 7 Conslusion and Future Work 

This paper proposes a new Vehicle Re-identification (VRI) algorithm applied to 

low-resolution traffic surveillance cameras on freeways with applications of travel time 

estimation. The contribution of this paper includes setting up a complete vehicle detection and 

feature extraction system when the quality of vehicle images is low. By considering VRI as a 

classification and mapping problem, Support Vector Machine (SVM) and linear programming are 

adopted to solve the vehicle matching problem. The approach was tested on two cases. One is 

closed without any entrance or exit, while the other has one exit. The re-identification F-score is 

about 68% and 57% for the two cases, respectively, which outperforms the state-of-the-art 

methods. The estimation of travel time distribution also shows that the proposed VRI system is 

reliable. 

In the future work, the proposed VRI algorithm will be tested in a larger scale traffic 

surveillance camera network. Also, the probability that one vehicle changes its lane and the 

probability that one vehicle exits from the fork can be expected as context information to improve 

VRI accuracy.  
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